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Abstract 

This study analyzes a free entry oligopoly under general demand and cost functions via 

a differential game approach. We consider an open-loop dynamic oligopoly and a 

memoryless closed-loop dynamic oligopoly with sticky prices. The results show under some 

assumptions that the number of firms at the steady state in the open-loop dynamic oligopoly 

is fewer than the number of firms in the static equilibrium, and that the number of firms in 

the memoryless closed-loop dynamic oligopoly is fewer than the number of firms in the 

open-loop dynamic oligopoly. 
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1. Introduction 

In this paper we analyze a free entry dynamic oligopoly under general demand and cost 

functions by a differential game approach. Mainly we show that the number of firms at the 

steady state in the open-loop dynamic oligopoly is smaller than that in the static equilibrium, 

and that in the memoryless closed-loop dynamic oligopoly is smaller than that in the open-loop 

dynamic oligopoly.  

There are many studies of dynamic oligopoly by differential game approach, for example,  

Simaan and Takayama (1978), Fershtman and Kamien (1987), Cellini and Lambertini (2004) 

and Cellini and Lambertini (2007) about behaviors of firms and market structures with 

dynamics of sticky prices in an oligopoly with a homogeneous good or differentiated goods, 

Cellini and Lambertini (2003a) and Cellini and Lambertini (2003b) about advertising 

investment with dynamics of accumulated advertising effects in an oligopoly with a 

homogeneous good or differentiated goods, Cellini and Lambertini (2005) and Cellini and 

Lambertini (2011) about R&D investment with dynamics of accumulated cost reducing effects 

in an oligopoly with a homogeneous good or differentiated goods, Fujiwara (2006) about a 

Stackelberg duopoly, Fujiwara (2008) about competitiveness of markets in an oligopoly with 

renewable resource. For a comprehensive survey, see Dockner et al. (2000) and Lambertini 
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(2018). In particular, Cellini and Lambertini (2004) studied an oligopoly in which firms produce 

a homogeneous good. However, most of these studies including Cellini and Lambertini (2004) 

used a model of specific (linear or quadratic) demand and cost functions. These are limited 

assumptions. We study a steady state of free entry oligopoly with a homogeneous good under 

general demand and cost functions. In the next section we present a model and assumptions of 

this paper. In Section 3 we consider an open-loop solution of a differential game analysis of 

free entry oligopoly. In Section 4 we examine a memoryless closed-loop solution.  

In Propositions 1 and 2 we show the following results.  

1. If the inverse demand function is concave or its second order derivative is not so large when 

it is strictly convex, then the number of firms at the steady state of the free entry open-loop 

dynamic oligopoly is decreasing with respect to discount rate, and it is increasing with respect 

to the speed of price dynamics. Thus, under this assumption the number of firms at the steady 

state in the free entry open-loop dynamic oligopoly is smaller than that at the static equilibrium. 

2. The number of firms at the steady state of the memoryless closed-loop free entry oligopoly 

is smaller than the number of firms at the steady state of the open-loop free entry oligopoly. 

2. The Model 

Our model of dynamic oligopoly is based on the model in Simaan and Takayama (1978), 

Fershtman and Kamien (1987), and Cellini and Lambertini (2004). We generalize linear 

demand and cost functions in their models to general demand and cost functions.  There is a 

symmetric oligopoly where, at any  0, ,t  n firms, and firms 1,2, ,n produce a 

homogeneous good. Firms maximize their discounted profits. Let ( ),ix t  1,2, , ,i n be the 

outputs of the firms, ( )p t be the price of the good at 𝑡. 

The inverse demand function is  

�̂�(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)). 

We assume  

�̂�′(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)) < 0. 

The cost function of Firm 𝑖, 𝑖 ∈ {1,2, … , 𝑛}, is  

𝑐(𝑥𝑖(𝑡)), 𝑖 ∈ {1,2, … , 𝑛}. 

All firms have the same cost functions. It satisfies 𝑐′(𝑥𝑖(𝑡)) > 0 and 𝑐′′(𝑥𝑖(𝑡)) > 0, that is, it 

is strictly increasing and strictly convex. The instantaneous profit of Firm 𝑖, is  

𝜋𝑖(𝑡) = 𝑥𝑖(𝑡)𝑝(𝑡) − 𝑐(𝑥𝑖(𝑡)), 𝑖 ∈ {1,2, … , 𝑛}. 

The price of the good evolves according to the following dynamics. 
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𝑑𝑝(𝑡)

𝑑𝑡
= 𝑠[�̂�(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)) − 𝑝(𝑡)], 𝑠 > 0, 𝑝(0) > 0. (1) 

𝑠 is the speed of price adjustment, and it is an inverse measure of price stickiness. There are 

black-boxing menu costs or other similar mechanism behind this model (see, for example, 

Lambertini, 2018). The problem of Firm 𝑖 is  

max
𝑥𝑖(𝑡)

∫
∞

0

𝑒−𝜌𝑡[𝑥𝑖(𝑡)𝑝(𝑡) − 𝑐(𝑥𝑖(𝑡))]𝑑𝑡, 

subject to (1). 𝜌 > 0 is the discount rate. 

The present value Hamiltonian function of Firm 𝑖, 𝑖 ∈ {1,2, … , 𝑛}, is  

ℋ𝑖(𝑡) = 𝑒−𝜌𝑡{𝑥𝑖(𝑡)𝑝(𝑡) − 𝑐(𝑥𝑖(𝑡)) + 𝜆𝑖(𝑡)𝑠[�̂�(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)) − 𝑝(𝑡)]}. 

 The current value Hamiltonian function of Firm 𝑖, 𝑖 ∈ {1,2, … , 𝑛}, is  

ℋ̂𝑖(𝑡) = 𝑒𝜌𝑡ℋ1(𝑡) 

= 𝑥𝑖(𝑡)𝑝(𝑡) − 𝑐(𝑥𝑖(𝑡)) + 𝜆𝑖(𝑡)𝑠[�̂�(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)) − 𝑝(𝑡)]}. 

 Let  

𝜇𝑖(𝑡) = 𝑒−𝜌𝑡𝜆𝑖(𝑡), 𝑖 ∈ {1,2, … , 𝑛}. 

𝜇𝑖(𝑡) is the costate variable. 

The free entry condition is written as follows.  

∫
∞

0

𝑒−𝜌𝑡[𝑥𝑖(𝑡)𝑝(𝑡) − 𝑐(𝑥𝑖(𝑡))]𝑑𝑡 = 0. 

At the steady state the number of firms as well as the price and the output of each firm are 

constant. Denoting them by 𝑛, 𝑝, 𝑥, the free entry condition is  

𝑝𝑥 − 𝑐(𝑥) = 0. (2) 

This holds in all cases. When all 𝑥𝑖(𝑡)′𝑠  are equal,  

𝜕𝑝

𝜕𝑛(𝑡)
= 𝑝′ 𝑥𝑖(𝑡),

𝜕𝑝′

𝜕𝑛(𝑡)
= 𝑝′′𝑥𝑖(𝑡). 

3. Open-loop Solution 

We consider an open-loop solution according to the analyses in Cellini and Lambertini 

(2003), Cellini and Lambertini (2004), Cellini and Lambertini (2007) and Lambertini (2018). 

The first order condition for Firm 𝑖 is  

𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑖(𝑡)
= 𝑝(𝑡) + �̂�′(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡))𝜆𝑖(𝑡)𝑠 − 𝑐′(𝑥𝑖(𝑡)) = 0. (3) 

 The second order condition is  
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𝜕2ℋ̂𝑖(𝑡)

𝜕𝑥𝑖(𝑡)2
= �̂�′′(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡))𝜆𝑖(𝑡)𝑠 − 𝑐′′(𝑥𝑖(𝑡)) < 0. (4) 

The adjoint condition is  

−
𝜕ℋ̂𝑖(𝑡)

𝜕𝑝(𝑡)
= −𝑥𝑖(𝑡) + 𝜆𝑖(𝑡)𝑠 =

𝜕𝜆𝑖(𝑡)

𝜕𝑡
− 𝜌𝜆𝑖(𝑡), 𝑖 ∈ {1,2, … , 𝑛}. 

This means  

𝜕𝜆𝑖(𝑡)

𝜕𝑡
= (𝜌 + 𝑠)𝜆𝑖(𝑡) − 𝑥𝑖(𝑡), 𝑖 ∈ {1,2, … , 𝑛}. 

Differentiating (3) with respect to time, we get  

[𝑐′′(𝑥𝑖(𝑡)) − �̂�′′𝜆𝑖(𝑡)𝑠]
𝑑𝑥𝑖(𝑡)

𝑑𝑡
=

𝑑𝑝(𝑡)

𝑑𝑡
+ �̂�′

𝜕𝜆𝑖(𝑡)

𝜕𝑡
𝑠 

=
𝑑𝑝(𝑡)

𝑑𝑡
+ �̂�′𝑠[(𝜌 + 𝑠)𝜆𝑖(𝑡) − 𝑥𝑖(𝑡)], 𝑖 ∈ {1,2, … , 𝑛}. 

(5) 

We denote �̂�′(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)) by �̂�′, and �̂�′′(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)) by 

�̂�′′. 

At the steady state 
𝑑𝑝(𝑡)

𝑑𝑡
= 0 , 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 0  and 

𝜕𝜆𝑖(𝑡)

𝜕𝑡
= 0  for 𝑖 ∈ {1,2, … , 𝑛} . By 

symmetry of the oligopoly, at the steady state all 𝑥𝑖(𝑡)’s and 𝜆𝑖(𝑡) are equal. Denote 𝑥𝑖(𝑡), 

𝑝(𝑡) and 𝜆𝑖(𝑡) at the steady state by 𝑥∗, 𝑝∗ and 𝜆∗. Then, from (5)  

(𝜌 + 𝑠)�̂�′𝑠𝜆∗ = �̂�′𝑠𝑥∗. 

Substituting this into (3) yields  

(𝜌 + 𝑠)
𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑖(𝑡)
= (𝜌 + 𝑠)[𝑝∗ − 𝑐′(𝑥∗)] + �̂�′𝑠𝑥∗ = 0. (6) 

This means  

𝑝∗ − 𝑐′(𝑥∗) > 0  and  𝑝∗ − 𝑐′(𝑥∗) + �̂�′𝑥∗ < 0. (7) 

By the free entry condition (2),  

𝑝∗𝑥∗ − 𝑐(𝑥∗) = 0. (8) 

Denote the steady state value of 𝑛(𝑡) by 𝑛∗. Since 𝑝∗ = �̂�(𝑛∗𝑥∗), from (8)  

𝑑𝑛∗

𝑑𝑥∗
= −

𝑝∗ + 𝑛∗�̂�′(𝑛∗𝑥∗)𝑥∗ − 𝑐′(𝑥∗)

�̂�′ ⋅ (𝑥∗)2
< 0  (from  (7)  and  �̂�′ < 0), (9) 

and  

𝑑(𝑛∗𝑥∗)

𝑑𝑥∗
= 𝑛∗ + 𝑥∗

𝑑𝑛∗

𝑑𝑥∗
= −

𝑝∗ − 𝑐′(𝑥∗)

�̂�′ ⋅ (𝑥∗)2
> 0. 

Equation (9) is the relation between 𝑛∗ and 𝑥∗ which satisfy the free entry condition. This is 

common to the open-loop and the closed-loop cases. The equilibrium of the static oligopoly is 
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obtained by setting 𝜌 = 0 (or 𝑠 → +∞). Differentiating (6) with respect to 𝜌, we obtain  

𝑑𝑥∗

𝑑𝜌
= −

𝑝∗ − 𝑐′(𝑥∗)

(𝜌 + 𝑠) [�̂�′
𝑑(𝑛∗𝑥∗)

𝑑𝑥∗ − 𝑐′′(𝑥∗)] + �̂�′𝑠 + �̂�′′𝑠𝑥∗ 𝑑(𝑛∗𝑥∗)
𝑑𝑥∗

. 

Similarly  

𝑑𝑥∗

𝑑𝑠
= −

𝑝∗ − 𝑐′(𝑥∗) + �̂�′𝑥∗

(𝜌 + 𝑠) [�̂�′
𝑑(𝑛∗𝑥∗)

𝑑𝑥∗ − 𝑐′′(𝑥∗)] + �̂�′𝑠 + �̂�′′𝑠𝑥∗ 𝑑(𝑛∗𝑥∗)
𝑑𝑥∗

. 

Since �̂�′ < 0, 
𝑑(𝑛∗𝑥∗)

𝑑𝑥∗
> 0, 𝑐′′(𝑥∗) > 0, 𝑝∗ − 𝑐′(𝑥∗) > 0, 𝑝∗ − 𝑐′(𝑥∗) + �̂�′𝑥∗ < 0, if �̂�′′ ≤

0 or |�̂�′′| is not so large even when �̂�′′ > 0, we have 
𝑑𝑥∗

𝑑𝜌
> 0 and 

𝑑𝑥∗

𝑑𝑠
< 0. From (9)  

𝑑𝑛∗

𝑑𝜌
< 0,

𝑑𝑛∗

𝑑𝑠
> 0. 

We have shown the following result.  

Proposition 1 If the inverse demand function is concave (�̂�′′ ≤ 0) or |�̂�′′| is not so large 

when it is strictly convex (�̂�′′ > 0), then the number of firms at the steady state in the free 

entry open-loop dynamic oligopoly is decreasing with respect to 𝜌 (discount rate), and it is 

increasing with respect to 𝑠 (speed of price adjustment). Thus, under this assumption the 

number of firms at the steady state in the free entry open-loop dynamic oligopoly is smaller 

than the number of firms at the static free entry equilibrium.  

Linear Demand and Quadratic Cost Example 

Suppose that the inverse demand function is  

�̂�(𝑡) = 𝑎 − ∑

𝑛

𝑖=1

𝑥𝑖(𝑡). (10) 

𝑎 is a positive constant. Also suppose that the cost function of Firm 𝑖, 𝑖 ∈ {1,2, … , 𝑛}, is  

𝑐(𝑥𝑖(𝑡)) = 𝑐𝑥𝑖(𝑡) +
1

2
𝑥𝑖(𝑡)2 + 𝑓. (11) 

 𝑓 > 0 is the fixed cost. Then, (6) and (8) are  

(𝜌 + 𝑠)[𝑎 − 𝑛∗𝑥∗ − 𝑐 − 𝑥∗] − 𝑠𝑥∗ = 0, 

and  

(𝑎 − 𝑛∗𝑥∗)𝑥∗ − 𝑐𝑥∗ −
1

2
(𝑥∗)2 − 𝑓 = 0. 

From them we get  
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𝑥∗ = √
2𝑓(𝜌 + 𝑠)

𝜌 + 3𝑠
, 

and  

𝑛∗ =
√2(𝑎 − 𝑐)√𝑓(𝜌 + 3𝑠)(𝜌 + 𝑠) + 2𝑓𝜌 + 4𝑓𝑠

2𝑓(𝑠 + 𝜌)
. 

Differentiating 𝑥∗ with respect to 𝜌 and 𝑠 yields  

𝑑𝑥∗

𝑑𝜌
=

√2𝑓𝑠

√𝜌 + 𝑠√(𝜌 + 3𝑠)3
> 0, 

and  

𝑑𝑥∗

𝑑𝑠
= −

√2𝑓𝜌

√𝜌 + 𝑠√(𝜌 + 3𝑠)3
< 0. 

4. Memoryless Closed-loop Solution 

In this section, according to the analyses in Cellini and Lambertini (2003a),Cellini and 

Lambertini (2004), Cellini and Lambertini (2007) and Lambertini (2018) (p.65), we consider a 

memoryless closed-loop approach to a dynamic oligopoly. The current value Hamiltonian 

function, the first order condition and the second order condition for Firm 𝑖, 𝑖 ∈ {1,2, … , 𝑛}, 

are the same as those in the open-loop case as follows;  

ℋ̂𝑖(𝑡) = 𝑥𝑖(𝑡)𝑝(𝑡) − 𝑐(𝑥𝑖(𝑡)) + 𝜆𝑖(𝑡)𝑠[�̂�(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡)) − 𝑝(𝑡)]}. 

𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑖(𝑡)
= 𝑝(𝑡) + �̂�′(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡))𝜆𝑖(𝑡)𝑠 − 𝑐′(𝑥𝑖(𝑡)) = 0, (12) 

 and  

𝜕2ℋ̂𝑖(𝑡)

𝜕𝑥𝑖(𝑡)2
= �̂�′′(𝑥1(𝑡) + 𝑥2(𝑡) + ⋯ + 𝑥𝑛(𝑡))𝜆𝑖(𝑡)𝑠 − 𝑐′′(𝑥𝑗(𝑡)) < 0. (13) 

 The adjoint condition for Firm 𝑖 ∈ {1,2, … , 𝑛} is different from that in the open-loop case. In 

the memoryless closed-loop case it is written as  

−
𝜕ℋ̂𝑖(𝑡)

𝜕𝑝(𝑡)
− ∑

𝑗≠𝑖

𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑗(𝑡)

𝜕𝑥𝑗(𝑡)

𝜕𝑝(𝑡)
=

𝜕𝜆𝑖(𝑡)

𝜕𝑡
− 𝜌𝜆𝑖(𝑡). (14) 

The term in (14)  
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− ∑

𝑗≠𝑖

𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑗(𝑡)

𝜕𝑥𝑗(𝑡)

𝜕𝑝(𝑡)
 

takes into account the interaction between the control variable of the firms other than Firm 𝑖 

and the current level of the state variable. 

We have  

𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑗(𝑡)
= �̂�′𝜆𝑖(𝑡)𝑠. 

About 
𝜕𝑥𝑗(𝑡)

𝜕𝑝(𝑡)
 from the first order condition,  

𝜕𝑥𝑗(𝑡)

𝜕𝑝(𝑡)
=

1

𝑐′′(𝑥𝑗(𝑡)) − �̂�′′𝜆𝑗(𝑡)𝑠
. 

Therefore, (14) is rewritten as  

−
𝜕ℋ̂

𝜕𝑝(𝑡)
− ∑

𝑗≠𝑖

𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑗(𝑡)

𝜕𝑥𝑗(𝑡)

𝜕𝑝(𝑡)
 

= −𝑥𝑖(𝑡) + 𝜆𝑖(𝑡)𝑠 − �̂�′𝜆𝑖(𝑡)𝑠 ∑

𝑗≠𝑖

1

𝑐′′(𝑥𝑗(𝑡)) − �̂�′′𝜆𝑗(𝑡)𝑠
=

𝜕𝜆𝑖(𝑡)

𝜕𝑡
− 𝜌𝜆𝑖(𝑡). 

 This means  

𝜕𝜆𝑖(𝑡)

𝜕𝑡
= (𝜌 + 𝑠)𝜆𝑖(𝑡) − 𝑥𝑖(𝑡) − �̂�′𝜆𝑖(𝑡)𝑠 ∑

𝑗≠𝑖

1

𝑐′′(𝑥𝑗(𝑡)) − �̂�′′𝜆𝑗(𝑡)𝑠
. 

Differentiating (12) with respect to time, we get  

[𝑐′′(𝑥𝑖(𝑡)) − �̂�′′𝜆𝑖(𝑡)𝑠]
𝑑𝑥𝑖(𝑡)

𝑑𝑡
=

𝑑𝑝(𝑡)

𝑑𝑡
+ �̂�′

𝜕𝜆𝑖(𝑡)

𝜕𝑡
𝑠 

=
𝑑𝑝(𝑡)

𝑑𝑡
+ �̂�′𝑠[(𝜌 + 𝑠)𝜆𝑖(𝑡) − 𝑥𝑖(𝑡)] − (�̂�′𝑠)2𝜆𝑖(𝑡) ∑

𝑗≠𝑖

1

𝑐′′(𝑥𝑗(𝑡)) − �̂�′′𝜆𝑗(𝑡)𝑠
. 

 At the steady state 
𝑑𝑝(𝑡)

𝑑𝑡
= 0, 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 0 and 

𝜕𝜆𝑖

𝜕𝑡
= 0 for 𝑖 ∈ {1,2, … , 𝑛}. By symmetry of 

the oligopoly, at the steady state all 𝑥𝑖(𝑡)’s are equal and all 𝜆𝑖(𝑡)’s are equal. Denote 𝑥𝑖(𝑡), 

𝑝(𝑡) and 𝜆𝑖(𝑡) at the steady state by 𝑥∗∗, 𝑝∗∗ and 𝜆∗∗. Then, we obtain  

�̂�′𝑠 [(𝜌 + 𝑠) − �̂�′𝑠(𝑛 − 1)
1

𝑐′′(𝑥∗∗) − �̂�′′𝜆∗∗𝑠
] 𝜆∗∗ = �̂�′𝑠𝑥∗∗. 

Substituting this into (12),  
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[(𝜌 + 𝑠) − �̂�′𝑠(𝑛 − 1)
1

𝑐′′(𝑥∗∗) − �̂�′′𝜆∗∗𝑠
]

𝜕ℋ̂𝑖(𝑡)

𝜕𝑥𝑖(𝑡)
 

= [(𝜌 + 𝑠) − �̂�′𝑠(𝑛 − 1)
1

𝑐′′(𝑥∗∗) − �̂�′′𝜆∗∗𝑠
] [𝑝∗∗ − 𝑐′(𝑥∗∗)] + �̂�′𝑠𝑥∗∗ = 0. 

(15) 

The free entry condition is as follows;  

𝑝∗∗𝑥∗∗ − 𝑐(𝑥∗∗) = 0. (16) 

 Denote the steady state value of 𝑛(𝑡)  by 𝑛∗∗ . Suppose that 𝑥𝑖(𝑡) = 𝑥∗∗ . 𝑥∗∗  and 𝑛∗∗ 

satisfy (15). By the second order condition (13),  

𝑐′′(𝑥∗∗) − �̂�′′𝜆∗∗𝑠 > 0, (17) 

From �̂�′ < 0, (15) and (17), 

𝑝∗∗ − 𝑐′(𝑥∗∗) > 0. 

Thus, we have  

(𝜌 + 𝑠)[𝑝∗∗ − 𝑐′(𝑥∗∗)] + �̂�′𝑠𝑥∗∗ = �̂�′𝑠(𝑛 − 1)
1

𝑐′′(𝑥∗∗) − �̂�′′𝜆∗∗𝑠
[𝑝∗∗ − 𝑐′(𝑥∗∗)] < 0. 

Therefore, the left-hand side of (3) or (6), which are the first order conditions in the open-loop 

case, is negative. By the second order condition in the open-loop case (4) we get  

𝑥∗∗ > 𝑥∗. 

Then, from (9) we have 𝑛∗ > 𝑛∗∗. The following result has been shown.  

 

Note: The upper line depicts n*, and the lower line depicts n**. 

Figure 1: The Numbers of Firms in Open-loop, Closed-loop and ρ 
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Note: The upper line depicts n*, and the lower line depicts n**. 

Figure 2: The Numbers of Firms in Open-loop, Closed-loop and 𝑠 

Proposition 2 The number of firms at the steady state of the memoryless closed-loop free 

entry oligopoly is smaller than the number of firms at the steady state of the open-loop free 

entry oligopoly. 

Linear Demand and Quadratic Cost Example 

Suppose that the inverse demand function is (10), and the cost function of Firm 𝑖, 𝑖 ∈

{1,2, … , 𝑛}, is (11). Then, since 𝑐′′(𝑥𝑗(𝑡)) = 1 and �̂�′′ = 0, (15) is reduced to  

[(𝜌 + 𝑠) + (𝑛 − 1)𝑠][𝑎 − (𝑛 + 1)𝑥∗∗ − 𝑐] − 𝑠𝑥∗∗ = 0. 

(16) is written as follows;  

(𝑎 − 𝑛∗∗𝑥∗∗)𝑥∗∗ − 𝑐𝑥∗∗ −
1

2
(𝑥∗∗)2 − 𝑓 = 0. 

Solutions of them are complicated, and so we present graphical representations in Figure 1 and 

Figure 2. Assuming 𝑓 = 4, 𝑎 = 20, 𝑐 = 1, 𝑠 = 1  or 𝑓 = 4, 𝑎 = 20, 𝑐 = 1, 𝜌 = 1, they 

depict the relations of 𝑛∗, 𝑛∗∗, 𝜌 and 𝑠. 

5. Concluding Remark 

We have studied the problem of free entry Cournot oligopoly by a differential game approach 

under general demand and cost functions with a homogeneous good. In the future research we 

will study free entry oligopoly with differentiated goods, or monopolistic competition. 

How many firms enter the market in an oligopoly is important for the design of competition 

policy by the government. If firms make their decisions intertemporally so as to maximize the 

discounted profits, the analysis of a dynamic free entry oligopoly is an important theme of 

research. 
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