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1 Introduction 

Financial markets sometimes generate significant extreme changes, or so-called 

jumps in asset prices (Das, 1998, 2002; Chernov et al., 2003; Eraker et al., 2003; 

Eraker, 2004; and Maheu and McCurdy, 2004). A number of empirical and 

theoretical studies support the existence of jumps and their substantial impact on 

financial decisions, such as asset pricing, risk management, portfolio allocation, and 

hedging (Merton, 1976; Naik and Lee, 1990; Bates, 1996a, 1996b, 2000; Bakshi et 

al., 1997, 2000; Duffie et al., 2000; Das, 2002; Liu et al., 2003; Johannes, 2004; Lee, 

2009). The occurrence of jumps is mainly motivated by discontinuous information 

vis-à-vis macroeconomic news, earnings announcements, or rare events (Clark, 

1973; Ane and Geman, 2000; Maheu and McCurdy, 2004; Rangel, 2011.) Further, 

Maheu and McCurdy (2004) suggest that the number of jumps in stock returns series 

depends on unusual news in the market (responding to important events), leading to 

extreme movements in returns. The presence of jumps implies that market 

participants may react to unanticipated news systematically over time. Moreover, 

from a market microstructure perspective, Evans and Lyons (2002) argue that the 

occurrence of jumps results from portfolio shifts caused by private, non-common 

knowledge, news sources such as direct interdealer transactions, and customer 

orders. Dealers observe interdealer order flows to learn about the shift. As the 

market gradually aggregates the information, transactions between dealers and the 

non-dealer public may create jumps in prices of assets being traded. Though 

modeling jump patterns in asset prices is not an easy task, the Poisson distribution 

provides a simple approach which has proven to be useful in empirical studies 

(Jorion, 1988; Vlaar and Palm, 1993; Das, 1998; Chan and Maheu, 2002; Chernov et 

al., 2003; Maheu and McCurdy, 2004).  

Jump processes can be employed to capture the large movements in stock 

markets that continuous models are unable to accommodate. But the interplay 

between the various jump patterns over time is not trivial, and standard jump 

specifications are unable to replicate these patterns. Indeed, jumps in asset prices in 

one day seem to exist in a short period and increase the probability of observing 

successive recovering jumps, and then the returns go back to a normal level. This 

implies that a positive jump could come after a negative jump immediately, and vice 
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versa. Bondt and Thaler (1985), Jegadeesh (1990), Lo and MacKinlay (1990), and 

Jegadeesh and Titman (1993) show that stock returns exhibit reversals in longer-run 

intervals. In this paper, we define the jump occurring at the beginning as the “initial 

jump” and the following as the “recovering jump”. Though the occurrence of the 

initial jump could have a substantial and immediate impact on returns, the following 

recovering jump could fully or partially offset the effect of the initial jump. Taking 

this pattern into account in the model not only sheds more lights on the relationship 

between the initial jump and the recovering jump but is also useful for correctly 

estimating the impacts of jumps over a shorter period.  

Another interesting question arising from these dynamics is why the recovering 

jump occurs. If the initial jump is caused by unusual incoming news as previous 

literature suggests, we posit that investors could overreact to that unusual news so 

that the actual initial jump is larger than what it should be based on the scale and 

scope of the unusual news. When investors realize that they have overreacted to the 

unusual news, they will try to make a considerable correction to mitigate their 

previous decision. As a result, the recovering jump occurs and offsets (wholly or 

partially) the initial jump. On the other hand, if the initial jump occurs without any 

incoming news or information, as is sometimes the case, Chan (2003) argues that 

returns could still exhibit reversal in the subsequent period because investors 

sometimes overact to initial extreme price movements per se (not to the news) and 

later make corrections voluntarily.  

Accordingly, we summarize two jump phenomena in the returns process from 

the perspective of overreaction, as shown in Bondt and Thaler (1985) and Brown 

and Harlow (1988). First, large price changes (initial jump) will be followed by 

price reversals (recovering jump) in the opposite direction, namely the “directional 

effect”. Second, the larger the initial jump, the greater the subsequent recovering 

jump, denoted as the “magnitude effect.” Bondt and Thaler (1985) and Brown and 

Harlow (1988) have argued that the stock market overreacts to information such as 

past earnings and stock prices. Using cross-sectional approaches, both studies found 

that price reversals will occur in the longer-run for undervalued stocks that have 

experienced large price changes over the preceding five years. Compared to Bondt 

and Thaler (1985) and Brown and Harlow (1988), our paper offers two new 

contributions. First, focusing on short-run overreaction, we consider that price 
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changes are mainly due to short-term information arrivals. Therefore, our model is 

configured by discrete jumps to account for the arrival of unusual information with 

continuous normal innovations capturing the arrival of regular information. Thus, 

we use market factors such as stock returns, trading volumes, and volatilities to 

explain the probabilities of staying in different regimes of price changes. Second, we 

use a time-series approach and model the dynamics of stock returns series directly 

rather than observing the price reversals of stocks cross-sectionally as in Bondt and 

Thaler (1985) and Brown and Harlow (1988). Thus, our model can directly estimate 

the expected magnitudes of jumps and the expected durations of jumps. To that end, 

this paper develops a model to study the properties of initial and recovering jumps in 

the S&P 500 index. As a result, based on our model, we can investigate directional 

and magnitude effects from the perspective of overreaction. Moreover, we can use 

this model to detect how investors overreact to unusual news or to extreme price 

changes per se. 

2 Methodology 

The purpose of this paper is to develop a jump-recovering-switching model (JRS 

model) for the returns process. The JRS model allows discrete jumps with 

time-varying jump intensities as in Chan and Maheu (2002) and the parameters in 

the model are state-dependent with a latent state variable 𝑠𝑡 governed by a 3-state 

first-order Markov process. The model of stock returns 𝑅𝑡 is specified as: 

     𝑅𝑡 = 𝜇𝑠𝑡 + 𝜀𝑠𝑡,𝑡 + 𝐽𝑠𝑡,𝑡 , (1) 

where 𝜇𝑠𝑡  is the mean in regime 𝑠𝑡 ; 𝜀𝑠𝑡,𝑡  is the residual 𝜀𝑠𝑡,𝑡 |𝐼𝑡−1~𝑁(0, 𝜎𝑠𝑡
2 ), 

capturing the process of normal news arrivals and assumed to be contemporaneously 

independent of 𝐽𝑠𝑡,𝑡; 𝐼𝑡−1 represents the information set up to 𝑡 − 1; 𝜎𝑠𝑡
2  is the 

variance; 𝐽𝑠𝑡,𝑡  is the discrete jump component,
1
 capturing the process of unusual 

news arrivals in regime 𝑠𝑡 and defined as follows: 

                                                 
1By definition, 𝐽𝑠𝑡,𝑡 are jump components and 𝜀𝑠𝑡,𝑡 = 𝑅𝑡 − 𝜇𝑠𝑡,𝑡 − 𝐽𝑠𝑡,𝑡 so 𝜀𝑠𝑡,𝑡 contains no jumps. 
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                   𝐽𝑠𝑡,𝑡 = ∑ 𝑌𝑠𝑡,𝑡,𝑖

𝑛𝑠𝑡,𝑡

𝑖=0
, (2) 

where 𝑌𝑠𝑡,𝑡,𝑖  is the jump size and 𝑌𝑠𝑡,𝑡,𝑖 |𝐼𝑡−1~𝑁(𝜃𝑠𝑡 , 𝛿𝑠𝑡
2 ) ; 𝑛𝑠𝑡,𝑡  denotes the 

discrete counting process governing the number of jumps that occur between 𝑡 − 1 

and 𝑡 and follows a Poisson distribution:  

                      𝑃 (𝑛𝑠𝑡,𝑡
=𝑗𝑠𝑡

|𝑠𝑡=𝑠,𝐼𝑡−1)=
exp (−𝜆𝑠𝑡)𝜆𝑠𝑡

𝑗𝑠𝑡

𝑗𝑠𝑡
!

,𝑗𝑠𝑡
=0,1,2,…, (3) 

with jump intensity 𝜆𝑠𝑡 .  

To incorporate the properties of the initial jump and the recovering jump into 

the 3-state JRS model, we make two assumptions regarding the switching process 

between regimes. First, in the no-jump regime (𝑠𝑡 = 1), jumps are not allowed. 

Therefore, the jump component 𝐽1,𝑡  is assumed to be zero. Second, in our 

specification, stock returns begin in the no-jump regime (𝑠𝑡 = 1) and can remain in 

that regime with transition probability 𝑝11  or move to the initial-jump regime 

(𝑠𝑡 = 2) with 𝑝12 = 1 − 𝑝11 , where the transition probability is defined as follows: 

                               𝑝
𝑖𝑗
=𝑃

(

 
 𝑠𝑡=𝑗||𝑠𝑡−1=𝑖

)

 
 . (4) 

The no-jump regime cannot move directly to the recovering-jump regime 

(𝑠𝑡 = 3); thus, 𝑝13 = 0. Once in the initial-jump regime, it is not possible to revert 

to the no-jump regime (𝑝21 = 0). Instead, it either remains in the initial-jump regime 

(i.e., jump again in the same direction as in the initial-jump regime) with 𝑝22 or 

moves to the recovering-jump regime (𝑠𝑡 = 3) with 𝑝23 = 1 − 𝑝22. Consequently, 

when in the recovering-jump regime, it could either stay in the recovering-jump 

regime (i.e., jump again in the same direction as in the recovering-jump regime) 

with 𝑝33 or revert back to the no-jump regime with 𝑝31 = 1 − 𝑝33. To summarize, 

our transition probability matrix is specified as 

                                                                                            𝑃= 

(
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. (5) 

To apply maximum likelihood estimation, we follow Lee (2009) and employ the 

filter in Hamilton (1989, 1994) for regime switching and the filter in Chan and 
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Maheu (2002) for jumps. Considering the conditional density of returns of being in 

regime s and information set 𝐼𝑡−1 

           𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1) = ∑ 𝑓(𝑅𝑡 , 𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)

∞

𝑗𝑠𝑡=0

, (6) 

where  

                                                                                            𝑓
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. (7) 

𝑓(𝑅𝑡|𝑛𝑠,𝑡 = 𝑗𝑠𝑡 , 𝑠𝑡 = 𝑠, 𝐼𝑡−1) in Equation (7) denotes the conditional density of 

returns in regime 𝑠 given that 𝑗𝑠𝑡  jumps occur and the information set 𝐼𝑡−1 is 

normally distributed, and can be defined as 

  𝑓(𝑅𝑡|𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡 , 𝑠𝑡 = 𝑠, 𝐼𝑡−1) =
1

√2𝜋(𝜎𝑠𝑡
2 +𝑗𝑠𝑡𝛿𝑠𝑡

2 )

exp [
(𝑅𝑡−𝜇𝑠𝑡,𝑡−𝑗𝑠𝑡𝜃𝑠𝑡)

2

2(𝜎𝑠𝑡
2 +𝑗𝑠𝑡𝛿𝑠𝑡

2 )
]. (8) 

When returns data at time 𝑡  have been observed, we can infer the ex post 

probability that 𝑗𝑠𝑡  jumps occur in regime 𝑠 at time 𝑡 with the filter proposed by 

Chan and Maheu (2002), and thus the ex post probability can be defined as follows: 

           𝑃(𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡)

=
𝑓(𝑅𝑡|𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡 , 𝑠𝑡 = 𝑠, 𝐼𝑡−1)𝑃(𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)

𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)
, 

(9) 

where 𝑃(𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)  is defined in Equation (3), 

𝑓(𝑅𝑡|𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡 , 𝑠𝑡 = 𝑠, 𝐼𝑡−1) is defined in Equation (8), and 𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1) is 

defined in Equation (6). 

 In addition, the state probability 𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1) in Equation (7) is defined as 

             𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1) = ∑𝑝𝑖𝑠𝑃(𝑠𝑡−1 = 𝑖|𝐼𝑡−1),

3

𝑖=1

 (10) 

where 𝑝𝑖𝑗 is defined in Equation (4). To ensure that 𝑝𝑖𝑗  lies between 0 and 1, we 

impose a restriction on 𝑝𝑖𝑗  with a logistic function. That is, we specify 𝑝𝑖𝑗 =

1/[1 + exp (−𝑝𝑖𝑗
∗ )] and estimate the parameter 𝑝𝑖𝑗

∗  in the procedure of maximum 

likelihood estimation. In the empirical results, we also report the value of 𝑝̂𝑖𝑗 by 

calculating 1/[1 + exp (−𝑝̂𝑖𝑗
∗ )].  
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According to Hamilton’s filter for the switching process, when returns data at 

time 𝑡 have been observed, we can infer the ex post probability of regime 𝑠. We 

first define the information set up to 𝑡 − 1  and 𝑡  respectively as 𝐼𝑡−1 =

[𝑅𝑡−1, 𝑅𝑡−2, … , 𝑅0]  and 𝐼𝑡 = [𝑅𝑡 , 𝐼𝑡−1] . By Bayes’ Theorem, we have 

(𝑠𝑡 = 𝑠|𝑅𝑡 , 𝐼𝑡−1)  = 𝑓(𝑅𝑡 , 𝑠𝑡 = 𝑠|𝐼𝑡−1)/𝑓(𝑅𝑡|𝐼𝑡−1) , where 𝑓(𝑅𝑡 , 𝑠𝑡 = 𝑠|𝐼𝑡−1) =

𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)𝑓(𝑠𝑡 = 𝑠|𝐼𝑡−1) by Bayes’ Theorem again. Finally, we get the ex 

post probability of regime 𝑠 given the information set up to 𝑡 as follows: 

            𝑃(𝑠𝑡 = 𝑠|𝐼𝑡) =
𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1)

𝑓(𝑅𝑡|𝐼𝑡−1)
, (11) 

where 𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1) and 𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1) are defined as per Equation (6) and 

Equation (10), respectively. Equation (9) and Equation (11) are important 

components of time-varying jump dynamic and state processes in our JRS model.  

Finally, the conditional density of returns given information set 𝐼𝑡−1 can be 

derived as follows: 

            𝑓(𝑅𝑡|𝐼𝑡−1) = ∑𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1),

3

𝑠=1

 (12) 

and all parameters can be estimated by maximizing the log-likelihood function: 

            logL = ∑ log[𝑓(𝑅𝑡|𝐼𝑡−1)] .

𝑇

𝑡=1

 (13) 

Once we obtain all the estimates in our model, since the magnitudes of initial jump 

and recovering jump are defined as 𝑀𝐴𝐺2 = 𝐸(𝐽2,𝑡|𝑠𝑡 = 2, 𝐼𝑡−1) = 𝜆2𝜃2 and 

𝑀𝐴𝐺3 = 𝐸(𝐽3,𝑡|𝑠𝑡 = 3, 𝐼𝑡−1) = 𝜆3𝜃3, respectively, the recovery rate (𝑅𝑅) can be 

calculated by |𝜆̂3𝜃̂3/𝜆̂2𝜃̂2|. Moreover, the duration of jumps in state 𝑖 (𝐷𝑈𝑅𝑖) can 

be calculated by 1/(1 − 𝑝̂𝑖𝑖). 

To investigate if the probability of remaining in state 𝑖, 𝑝𝑖,𝑡 = 𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1) 

is correlated with the factors generated by the price change such as daytime returns 

(𝐷𝑅𝑡), change in trading volume (𝐷𝑉𝑡) , and range volatility (𝑅𝑎𝑛𝑔𝑒𝑡), we specify 

a regression equation to be estimated by ordinary least squares (OLS) and censored 

regression  

𝑝𝑖,𝑡 = 𝑎𝑖,0 + 𝑎𝑖,10𝐷𝑅𝑡 + 𝑎𝑖,11𝐷𝑅𝑡−1 + 𝑎𝑖,20𝐷𝑉𝑡 + 𝑎𝑖,21𝐷𝑉𝑡−1 + (14) 
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                     𝑎𝑖,30𝑅𝑎𝑛𝑔𝑒𝑡 + 𝑎𝑖,31𝑅𝑎𝑛𝑔𝑒𝑡−1 + 𝑎𝑖,4𝑝𝑖,𝑡−1 + 𝑒𝑖,𝑡. 

3 Data and Empirical Results 

This paper investigates initial and recovering jumps in the S&P 500 index. All data 

are obtained from Datastream. The sample period spans 2002 to 2015. S&P 500 

index returns 𝑅𝑡 = 100 × [log(𝑆𝑃𝑡
𝑐) − log (𝑆𝑃𝑡−1

𝑐 )]  where 𝑆𝑃𝑡
𝑐  is the daily 

closing price at time 𝑡. Moreover, the factors generated by the price change such as 

daytime returns (𝐷𝑅𝑡 ), change in trading volume (𝐷𝑉𝑡)  and range volatility 

(𝑅𝑎𝑛𝑔𝑒𝑡 ) are calculated respectively by 𝐷𝑅𝑡 = 100 × [log(𝑆𝑃𝑡
𝑐) − log (𝑆𝑃𝑡

𝑜)] , 

𝐷𝑉𝑡 = 100 × [log(𝑉𝑜𝑙𝑢𝑚𝑒𝑡) − log(𝑉𝑜𝑙𝑢𝑚𝑒𝑡−1)]  and 𝑅𝑎𝑛𝑔𝑒𝑡 = 100 ×

[log(𝑆𝑃𝑡
ℎ) − log (𝑆𝑃𝑡

𝑙)] where 𝑉𝑜𝑙𝑢𝑚𝑒𝑡  is trading volume, and 𝑆𝑃𝑡
𝑜 , 𝑆𝑃𝑡

ℎ  and 

𝑆𝑃𝑡
𝑙 are the opening, highest, and lowest prices, respectively. 

Table 1 reports descriptive statistics for 𝑅𝑡  during three sub-periods, 2002–

2006, 2007–2010, and 2011–2015. The mean returns are positive during 2002–2006 

and 2011–2015 and negative during 2007–2010 (the subprime crisis period). 

Volatility measures of 𝑅𝑡  , proxied by standard deviations, range from 0.991 

(2011-2015) to 1.706 (2007-2010). The subprime crisis increased stock market 

volatility.  

Table 1. Descriptive Statistics 

 2002-2006 2007-2010 2011-2015 

Observations 

Mean 

Standard deviation 

Percentile (5%) 

Percentile (95%) 

1303 

0.021 

1.000 

-1.553 

1.602 

1045 

-0.007 

1.706 

-2.721 

2.385 

1155 

0.038 

0.991 

-1.556 

1.487 
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Table 2. JRS Coefficient Estimates 

 2002-2006 2007-2010 2011-2015 
𝜇1 0.027 

(0.024) 
[0.251] 

0.042* 
(0.025) 
[0.089] 

0.091** 
(0.029) 
[0.002] 

𝜎1
2 0.512** 

(0.040) 
[0.000] 

1.096** 
(0.111) 
[0.000] 

0.314** 
(0.059) 
[0.000] 

𝜇2 0.023 
(0.326) 
[0.943] 

0.076 
(0.392) 
[0.846] 

0.302** 
(0.028) 
[0.000] 

𝜎2
2 1.231 

(0.870) 
[0.157] 

18.585** 
(1.506) 
[0.000] 

2.942** 
(0.224) 
[0.000] 

𝜃2 -1.054** 
(0.266) 
[0.000] 

-1.307* 
(0.775) 
[0.092] 

-1.022** 
(0.039) 
[0.000] 

𝛿2
2 0.159 

(1.018) 
[0.876] 

2.615 
(4.313) 
[0.544] 

0.462** 
(0.044) 
[0.000] 

𝜆2 0.939** 
(0.220) 
[0.000] 

0.505** 
(0.087) 
[0.000] 

0.480** 
(0.045) 
[0.000] 

𝜇3 0.013 
(0.134) 
[0.921] 

-0.210 
(0.203) 
[0.302] 

-0.118** 
(0.026) 
[0.000] 

𝜎3
2 1.708** 

(0.149) 
[0.000] 

3.940** 
(0.984) 
[0.000] 

0.946** 
(0.111) 
[0.000] 

𝜃3 0.901** 
(0.094) 
[0.000] 

1.844** 
(0.135) 
[0.000] 

0.373** 
(0.032) 
[0.000] 

𝛿3
2 0.550** 

(0.030) 
[0.000] 

2.255** 
(0.192) 
[0.000] 

0.126** 
(0.062) 
[0.041] 

𝜆3 0.623** 
(0.117) 
[0.000] 

0.115 
(0.073) 
[0.118] 

0.421** 
(0.031) 
[0.000] 

𝑝11
∗  2.863** 

(0.249) 
[0.000] 
𝑝11=0.946 

5.493** 
(0.362) 
[0.000] 
𝑝11=0.996 

3.538** 
(0.352) 
[0.000] 
𝑝11=0.972 

𝑝22
∗  -0.163 

(0.559) 
[0.770] 
𝑝22=0.459 

2.989** 
(0.508) 
[0.000] 
𝑝22=0.952 

2.056** 
(0.425) 
[0.000] 
𝑝22=0.887 

𝑝33
∗  0.452* 

(0.241) 
[0.061] 
𝑝33=0.611 

4.090** 
(0.297) 
[0.000] 
𝑝33=0.984 

3.058** 
(0.111) 
[0.000] 
𝑝33=0.955 

Numbers in parentheses are standard errors and those in brackets are p-values. 

** and * denote significance at the 5% and 10% level, respectively. 

Coefficient estimates derived from the JRS model are presented in Table 2. All 

estimates are obtained via maximum likelihood estimation. Table 2 shows that most 

of the estimates are statistically significant (at either the 5% or 10% level). The jump 

size parameters 𝜃2  and 𝜃3  are negative and positive respectively during each 

sub-period, supporting the “directional effect” whereby a positive price reversal 
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follows a large negative price change. Moreover, the absolute values of 𝜃2  and 

𝜃3  are the largest while the jump intensity parameters 𝜆2  and 𝜆3  are the lowest 

during the 2007-2010 subprime crisis period. 

Table 3 reports durations and magnitudes for the initial and recovering jumps 

as well as the recovery rate during each period. The durations of the initial-jump 

state (𝐷𝑈𝑅2 ) during each period are 1.85, 20.87, and 8.81 days, respectively. The 

durations of the recovering-jump state (𝐷𝑈𝑅3 ) during each period are 2.57, 60.75, 

and 22.28 days, respectively. The magnitudes of the initial jump (𝑀𝐴𝐺2 ) are -0.99, 

-0.66, and -0.49 during each period, respectively. The magnitudes of the recovering 

jump (𝑀𝐴𝐺3 ) are 0.56, 0.21 and 0.16 during each period, respectively. The larger 

the magnitude of the initial jump, the larger the magnitude of the subsequent 

recovering jump, supporting the “magnitude effect,” The recovery rate is 57% 

during 2002-2006, 32% during 2007-2010, and 33% during 2011-2015. 

Table 3. Duration, Magnitude, and Recovery Rate 

 2002-2006 2007-2010 2011-2015 

𝐷𝑈𝑅2  

𝐷𝑈𝑅3  

1.85 

2.57 

20.87 

60.75 

8.81 

22.28 

𝑀𝐴𝐺2  

𝑀𝐴𝐺3  

𝑅𝑅 

-0.99 

0.56 

57% 

-0.66 

0.21 

32% 

-0.49 

0.16 

33% 

The magnitudes of the initial jump and the recovering jump are defined as 𝑀𝐴𝐺2 = 𝐸(𝐽2,𝑡|𝑠𝑡 =

2, 𝐼𝑡−1) = 𝜆2𝜃2 and 𝑀𝐴𝐺3 = 𝐸(𝐽3,𝑡|𝑠𝑡 = 3, 𝐼𝑡−1) = 𝜆3𝜃3, respectively. The recovery rate (𝑅𝑅) can be 

calculated by |𝜆̂3𝜃̂3/𝜆̂2𝜃̂2|. Moreover, the duration of time spent in state 𝑖 (𝐷𝑈𝑅𝑖) can be calculated by 

1/(1 − 𝑝̂𝑖𝑖). 

Table 4 presents coefficient estimates derived from OLS and censored 

regressions, configured in Equation (14), to identify the price factors affecting the 

probability of being in the initial- and recovering-jump states. The results are very 

similar across both of these regressions. We find that 𝐷𝑅𝑡 , 𝑅𝑎𝑛𝑔𝑒𝑡 ,  and 

𝑅𝑎𝑛𝑔𝑒𝑡−1  are the general factors affecting the probability of being in an 

initial-jump state (𝑝2,𝑡) across the three periods. But the magnitude becomes smaller 

during the 2007–2010 period. The price factors exhibit a smaller impact on 𝑝3,𝑡 

during the 2011–2015 period than during 2002–2006. Moreover, only 𝑅𝑎𝑛𝑔𝑒𝑡  

affects the probability of being in the recovering-jump state.  

 

 



Jump-Switching in Stock Returns                        61 

Table 4. OLS and Censored Regression Coefficient Estimates   

 
2002-2006 2007-2010 2011-2015 

 
OLS 

 
Censored 

 
OLS 

 
Censored 

 
OLS 

 
Censored 

 𝑎2,0 -0.010 ** -0.010 ** 0.004 *** 0.004 *** 0.000 
 

0.000 
 

 
(0.005) 

 
(0.005) 

 
(0.001) 

 
(0.001) 

 
(0.004) 

 
(0.004) 

 

 
[0.025] 

 
[0.025] 

 
[0.006] 

 
[0.005] 

 
[0.938] 

 
[0.938] 

 𝑎2,10 -6.703 *** -6.703 *** -0.117 *** -0.117 *** -0.927 *** -0.927 *** 

 
(0.218) 

 
(0.218) 

 
(0.043) 

 
(0.043) 

 
(0.187) 

 
(0.186) 

 

 
[0.000] 

 
[0.000] 

 
[0.007] 

 
[0.007] 

 
[0.000] 

 
[0.000] 

 𝑎2,11 1.003 *** 1.003 *** -0.017 
 

-0.017 
 

0.516 *** 0.516 *** 

 
(0.268) 

 
(0.267) 

 
(0.044) 

 
(0.043) 

 
(0.189) 

 
(0.188) 

 

 
[0.000] 

 
[0.000] 

 
[0.688] 

 
[0.687] 

 
[0.006] 

 
[0.006] 

 𝑎2,20 -0.026 ** -0.026 ** 0.003 
 

0.003 
 

0.009 
 

0.009 
 

 
(0.012) 

 
(0.012) 

 
(0.004) 

 
(0.004) 

 
(0.011) 

 
(0.011) 

 

 
[0.035] 

 
[0.035] 

 
[0.509] 

 
[0.507] 

 
[0.410] 

 
[0.408] 

 𝑎2,21 0.002 
 

0.002 
 

0.004 
 

0.004 
 

0.024 ** 0.024 ** 

 
(0.012) 

 
(0.012) 

 
(0.004) 

 
(0.004) 

 
(0.010) 

 
(0.010) 

 

 
[0.874] 

 
[0.873] 

 
[0.331] 

 
[0.329] 

 
[0.019] 

 
[0.018] 

 𝑎2,30 5.279 *** 5.279 *** 0.168 ** 0.168 ** 2.842 *** 2.842 *** 

 
(0.380) 

 
(0.379) 

 
(0.079) 

 
(0.079) 

 
(0.364) 

 
(0.362) 

 

 
[0.000] 

 
[0.000] 

 
[0.034] 

 
[0.033] 

 
[0.000] 

 
[0.000] 

 𝑎2,31 -1.961 *** -1.961 *** -0.391 *** -0.391 *** -2.410 *** -2.410 *** 

 
(0.398) 

 
(0.397) 

 
(0.079) 

 
(0.078) 

 
(0.361) 

 
(0.360) 

 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 𝑎2,4 0.618 *** 0.618 *** 1.004 *** 1.004 *** 0.969 *** 0.969 *** 

 
(0.021) 

 
(0.021) 

 
(0.004) 

 
(0.004) 

 
(0.009) 

 
(0.009) 

 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 𝑎3,0 -0.047 *** -0.047 *** -0.003 *** -0.003 *** -0.005 * -0.005 * 

 
(0.005) 

 
(0.005) 

 
(0.001) 

 
(0.001) 

 
(0.003) 

 
(0.003) 

 

 
[0.000] 

 
[0.000] 

 
[0.005] 

 
[0.005] 

 
[0.074] 

 
[0.073] 

 𝑎3,10 3.080 *** 3.080 *** -0.020 
 

-0.020 
 

-0.419 *** -0.414 *** 

 
(0.235) 

 
(0.234) 

 
(0.043) 

 
(0.043) 

 
(0.147) 

 
(0.147) 

 

 
[0.000] 

 
[0.000] 

 
[0.640] 

 
[0.637] 

 
[0.004] 

 
[0.005] 

 𝑎3,11 -4.011 *** -4.011 *** -0.058 
 

-0.058 
 

-0.780 *** -0.786 *** 

 
(0.258) 

 
(0.257) 

 
(0.043) 

 
(0.043) 

 
(0.149) 

 
(0.149) 

 

 
[0.000] 

 
[0.000] 

 
[0.180] 

 
[0.178] 

 
[0.000] 

 
[0.000] 

 𝑎3,20 -0.014 
 

-0.014 
 

0.002 
 

0.002 
 

-0.002 
 

-0.002 
 

 
(0.013) 

 
(0.013) 

 
(0.004) 

 
(0.004) 

 
(0.009) 

 
(0.009) 

 

 
[0.269] 

 
[0.267] 

 
[0.620] 

 
[0.624] 

 
[0.779] 

 
[0.776] 

 𝑎3,21 0.031 ** 0.031 ** 0.002 
 

0.002 
 

-0.004 
 

-0.004 
 

 
(0.013) 

 
(0.013) 

 
(0.004) 

 
(0.004) 

 
(0.008) 

 
(0.008) 

 

 
[0.016] 

 
[0.016] 

 
[0.588] 

 
[0.592] 

 
[0.641] 

 
[0.609] 

 𝑎3,30 5.220 *** 5.220 *** 0.123 * 0.123 * -0.053 
 

-0.066 
 

 
(0.407) 

 
(0.406) 

 
(0.074) 

 
(0.074) 

 
(0.264) 

 
(0.263) 

 

 
[0.000] 

 
[0.000] 

 
[0.099] 

 
[0.096] 

 
[0.841] 

 
[0.802] 

 𝑎3,31 0.922 ** 0.922 ** 0.100 
 

0.101 
 

0.915 *** 0.924 *** 

 
(0.437) 

 
(0.435) 

 
(0.074) 

 
(0.073) 

 
(0.257) 

 
(0.256) 

 

 
[0.035] 

 
[0.034] 

 
[0.174] 

 
[0.170] 

 
[0.000] 

 
[0.000] 

 𝑎3,4 0.782 *** 0.782 *** 0.995 *** 0.995 *** 0.990 *** 0.990 *** 

 
(0.016) 

 
(0.016) 

 
(0.002) 

 
(0.002) 

 
(0.004) 

 
(0.004) 

 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
[0.000] 

 
Numbers in parentheses are standard errors and those in brackets are p-values. 

***, **, and * denote significance at the 1%, 5%, and 10% level, respectively. 

Figure 1 plots the log return of S&P 500 and the smoothed probability of the 

recovering-jump regime with the shaded area indicating the days where the 

smoothed probability of the initial-jump regime is larger than 0.5. We find that the 
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smoothed probability of the recovering-jump regime is high immediately after 

initial-jump regimes. Moreover, Figure 1 also confirms that volatility is a key factor 

affecting the probability of initial and recovering-jump regimes. 

 

 

Figure 1. Initial-Jump Regime, Recovering-Jump Regime, and Log Return of S&P 500 

4 Conclusions 

In this study, we have proposed a three-state jump-recovering-switching model and 

it has been successfully tested against S&P 500 index returns spanning a 14-year 

period (from 2002-2015). Based on our findings, the initial jump is followed by a 

recovering jump in the opposite direction, which supports the “directional effect.” 

The data also indicate that the larger the initial jump, the greater the subsequent 

recovering jump, which provides further support for the “magnitude effect” 

discussed in the existing literature. 

Further, several interesting jump phenomena are identified for the subprime 

crisis period. Namely, the durations of each regime in this period are substantially 

longer, and the magnitudes of jumps and recovery rates are smaller compared to the 

two other sub-periods demarcated in our sample. These findings indicate that our 
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model can be successfully used to trace and measure the impact and jump transition 

performance of a target period. 

While this research remains preliminary, there is ample scope to apply similar 

JRS model methodologies to detect, or even forecast, jump behavior vis-à-vis 

duration, magnitude, and recovery rates by configuring time-varying specifications 

of jump size, intensity, and transitional probabilities. 
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Appendix 

This Appendix provides a detailed elaboration of the log-likelihood function used in 

this paper. The model of stock returns 𝑅𝑡 is specified as: 

𝑅𝑡 = 𝜇𝑠𝑡 + 𝜀𝑠𝑡,𝑡 + 𝐽𝑠𝑡,𝑡 , (15) 

where 𝜇𝑠𝑡 is the mean in regime 𝑠𝑡; 𝜀𝑠𝑡,𝑡  is the residual and 𝜀𝑠𝑡,𝑡 |𝐼𝑡−1~𝑁(0, 𝜎𝑠𝑡
2 ); 

𝐼𝑡−1 represents the information set up to 𝑡 − 1; 𝜎𝑠𝑡
2  is the variance; 𝐽𝑠𝑡,𝑡  is the 

discrete jump component in regime 𝑠𝑡 and defined as follows: 

          𝐽𝑠𝑡,𝑡 = ∑ 𝑌𝑠𝑡,𝑡,𝑖

𝑛𝑠𝑡,𝑡

𝑖=0

, (16) 

where 𝑌𝑠𝑡,𝑡,𝑖  is the jump size and 𝑌𝑠𝑡,𝑡,𝑖 |𝐼𝑡−1~𝑁(𝜃𝑠𝑡 , 𝛿𝑠𝑡
2 ) ; 𝑛𝑠𝑡,𝑡  denotes the 

discrete counting process governing the number of jumps that occur between 𝑡 − 1 

and 𝑡 and follows a Poisson distribution as follows: 

         𝑃(𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1) =
exp(−𝜆𝑠𝑡)𝜆𝑠𝑡

𝑗𝑠𝑡

𝑗𝑠𝑡!
, 𝑗𝑠𝑡 = 0,1,2, … , (17) 

with jump intensity 𝜆𝑠𝑡 .  
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Let 𝑓(𝑅𝑡|𝑛𝑠,𝑡 = 𝑗𝑠𝑡 , 𝑠𝑡 = 𝑠, 𝐼𝑡−1), the conditional density of returns in regime 

𝑠, given that 𝑗𝑠𝑡  jumps occur and are normally distributed, can be defined as 

follows: 

 𝑓(𝑅𝑡|𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡 , 𝑠𝑡 = 𝑠, 𝐼𝑡−1) =
1

√2𝜋(𝜎𝑠𝑡
2 +𝑗𝑠𝑡𝛿𝑠𝑡

2 )

exp [
(𝑅𝑡−𝜇𝑠𝑡,𝑡−𝑗𝑠𝑡𝜃𝑠𝑡)

2

2(𝜎𝑠𝑡
2 +𝑗𝑠𝑡𝛿𝑠𝑡

2 )
]. (18) 

Therefore, the conditional density of Rt  in regime s can be specified by 

integrating out the number of jumps as follows: 

           𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1) = ∑ 𝑓(𝑅𝑡 , 𝑛𝑠𝑡,𝑡 = 𝑗𝑠𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)

∞

𝑗𝑠𝑡=0

. (19) 

Consequently, the conditional density of returns given information set 𝐼𝑡−1 

can be derived as follows: 

            𝑓(𝑅𝑡|𝐼𝑡−1) = ∑𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1)

3

𝑠=1

, (20) 

where  

           𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1) =∑𝑝𝑖𝑠𝑃(𝑠𝑡−1 = 𝑖|𝐼𝑡−1);

3

𝑖=1

 (21) 

𝑝𝑖𝑗  is the transition probability, defined as follows: 

              𝑝𝑖𝑗 = 𝑃(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖). (22) 

Based on Bayes’ Theorem, the ex post probability of regime 𝑠 can be defined as 

follows: 

             𝑃(𝑠𝑡 = 𝑠|𝐼𝑡)=
𝑓(𝑅𝑡|𝑠𝑡 = 𝑠, 𝐼𝑡−1)𝑃(𝑠𝑡 = 𝑠|𝐼𝑡−1)

𝑓(𝑅𝑡|𝐼𝑡−1)
. (23) 

Consequently, by merging Equations (17)-(23), the log-likelihood function with 

parameters {𝜇𝑠𝑡 , 𝜎𝑠𝑡
2 , 𝜃𝑠𝑡 , 𝛿𝑠𝑡

2 , 𝜆𝑠𝑡 , 𝑝𝑖𝑗} can be formulated by the following: 

             logL = ∑ log[𝑓(𝑅𝑡|𝐼𝑡−1)]

𝑇

𝑡=1

. (24) 
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